MATH 2028 - Integration on bounded sets

So far, we have only talk about how to integrate bdd functions defined on a rectangle.

GOAL: Define the integral of f over a bdd subset  $\Omega \subseteq \mathbb{R}^n$ .

This can be done by a simple extension process. Let  $f: \Omega \rightarrow \mathbb{R}$  be a bdd function defined on a bdd subset  $\Omega \subseteq \mathbb{R}^n$ . We can define its extension  $\overline{f}: \mathbb{R}^n \rightarrow \mathbb{R}$  to a bdd function on the whole  $\mathbb{R}^n$  by

$$\overline{f}(x) = \begin{cases} f(x) & \text{if } x \in \Omega \\ 0 & \text{if } x \notin \Omega \end{cases}$$



<u>Def</u><sup>1</sup>: A bad function  $f: \Omega \rightarrow \mathbb{R}$  is integrable on a bad subset  $\Omega \subseteq \mathbb{R}^n$  if  $\exists$  rectangle  $\mathbb{R} \supseteq \Omega$ st. the extension  $\overline{f}$  is integrable on  $\mathbb{R}$ . In this case, we define  $\int_{\Omega} f \, dv = \int_{\mathbb{R}} \overline{f} \, dv$ .

Remark : The definition above seems to depend on the choice of the rectangle R containing  $\Omega$ . The Lemma below makes the definition unambiguous. Lemma: Suppose R and R' are two rectangles in  $R^n$  containing  $\Omega$ . Then,  $\overline{f}$  is integrable on R if and only if  $\overline{f}$  is integrable on R's moreover we have  $\int \overline{f} dV = \int \overline{f} dV$ 

**Proof**: It suffices to consider the case  $R' = R = \Omega$ . (Ex: Why?) Since  $\overline{F} = 0$  outside  $\Omega$ , the set of discontinuities of  $\overline{F}$  is contained inside R and has measure zero iff  $\overline{F}$  is integrable on R (or R').



The last assertion follows by a sub-division of R' into sub-rectangles as above.

Recall that a continuous function  $f: R \rightarrow R$  on a rectangle R is always integrable. This is NOT always true for cts functions defined on a bodd subset  $\Omega \subseteq \mathbb{R}^n$ . But the situation is better when the boundary  $\partial \Omega$  is not too wild. <u>Prop:</u> Let  $f: \Omega \rightarrow iR$  be a function. Suppose (i)  $\Omega \subseteq \mathbb{R}^n$  is a bodd subset whose boundary 20 has measure zero (in iR") (ii) f is continuous on  $\Omega$ . THEN, f is integrable on  $\Omega$ .

Proof: Note that the set of discontinuities of the extension  $\overline{F}$  is precisely  $\partial \Omega$ . The result follows from the integrability criteria.

<u>Remark</u>: Since the constant function f(x) = 1,  $\forall x \in \Omega$ is continuous on  $\Omega$ , if  $\Omega \in \mathbb{R}^n$  is a bodd subset with measure zero  $\partial \Omega$ , then we can define the volume of  $\Omega$  to be

$$Vol(\Omega) := \int_{\Omega} 1 \, dV$$

The following comparison result is often useful.

Prop: Let  $f, g: \Omega \rightarrow i\mathbb{R}$  be integrable functions on a bodd subset  $\Omega \subseteq \mathbb{R}^n$  st.  $\partial \Omega$  has measure zero. If  $f(x) \leq g(x)$   $\forall x \in \Omega$ , then

$$\int f dv \leq \int g dv$$

Proof: Exercise !